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The purpose of this study is to propose a high-accuracy and fast numerical method for the
Cauchy problem of the Laplace equation. Our problem is directly discretized by the method
of fundamental solutions (MFS). The Tikhonov regularization method stabilizes a numeri-
cal solution of the problem for given Cauchy data with high noises. The accuracy of the
numerical solution depends on a regularization parameter of the Tikhonov regularization
technique and some parameters of the MFS. The L-curve determines a suitable regulariza-
tion parameter for obtaining an accurate solution. Numerical experiments show that such a
suitable regularization parameter coincides with the optimal one. Moreover, a better
choice of the parameters of the MFS is numerically observed. It is noteworthy that a prob-
lem whose solution has singular points can successfully be solved. It is concluded that the
numerical method proposed in this paper is effective for a problem with an irregular
domain, singular points, and the Cauchy data with high noises.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Many kinds of inverse problems have recently been studied in science and engineering. The Cauchy problem of an elliptic
partial differential equation is a well known inverse problem. The Cauchy problem of the Laplace equation is an important
problem which can be applied to the inverse problem of electrocardiography [2]. Onishi et al. [11] proposed an iterative
method for solving the Cauchy problem of the Laplace equation. This method reduces the original inverse problem to an iter-
ative process which alternatively solves two direct problems. This method, called the adjoint method in the papers [7,14],
can solve various inverse problems by applying many kinds of numerical methods for solving partial differential equations,
such as the finite difference method (FDM), the finite element method (FEM), and the boundary element method (BEM). The
convergence of this method for the Cauchy problem of the Laplace equation has been obtained [13].

The method of fundamental solutions (MFS) is effective for easily and rapidly solving the elliptic well-posed direct prob-
lems in complicated domains. Mathon and Johnston [10] first showed numerical results obtained by the MFS. The papers
[1,9] discuss some mathematical theories on the MFS. Both of the BEM and the MFS are well known boundary methods,
which discretize original problems based on the fundamental solutions. The MFS does not require any treatments for the
singularity of the fundamental solution, while the BEM requires singular integrals. The MFS is a true meshless method,
and can easily be extended to higher dimensional cases.
. All rights reserved.
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Wei et al. [16] applied the MFS to the Cauchy problems of elliptic equations. This method uses the source points distrib-
uted outside the domain. The accuracy of numerical solutions depends on the location of the source points. They numerically
showed the relation between the accuracy and the radius of a circle where the source points are distributed. But, the relation
between the accuracy and the number of source points has not clearly been given, yet.

Many researchers have solved the Cauchy problem with various methods. However, to our knowledge, the conventional
methods cannot solve a problem whose solution has singular points outside the computational domain (see [8,15] for exam-
ple). Using the FDM or the spectral collocation method in multiple-precision arithmetic, we cannot successfully solve a prob-
lem such that the exact solution is unbounded outside the computational domain.

In this paper, we use the MFS to directly discretize the Cauchy problem of the Laplace equation. This is an ill-posed prob-
lem, where the solution has no continuous dependence on the boundary data. Namely, a small noise contained in the given
Cauchy data has a possibility to affect sensitively on the accuracy of the solution. The problem is discretized directly by the
MFS and an ill-conditioned matrix equation is obtained. A numerical solution of the ill-conditioned equation is unstable. The
singular value decomposition (SVD) can give an acceptable solution to such an ill-conditioned matrix equation. The SVD was
successfully applied to the MFS for solving a direct problem [12]. Even though we apply the SVD, we still cannot obtain an
acceptable solution for the case of the noisy Cauchy data. We use the Tikhonov regularization to obtain a stable regularized
solution of the ill-conditioned equation. The regularized solution depends on a regularization parameter. Then, we need to
determine a suitable regularization parameter to obtain a better regularized solution. Hansen [3] suggested the L-curve as a
method for finding the suitable regularization parameter. It is known that the suitable parameter is the one corresponding to
a regularized solution near the ‘‘corner” of the L-curve. We can find the corner of the L-curve as a point with the maximum
curvature [6].

Under the assumption of uniform distribution of the source and the collocation points, we will numerically indicate that a
suitable regularized solution obtained by the L-curve is optimal in the sense that the error is minimized. We will respectively
show the accuracy and the optimal regularization parameter against a noise level of the Cauchy data. We will also mention
influence of the total numbers of the source and the collocation points on accuracy. We will show that our method is effec-
tive for a problem whose solution has singular points outside the computational domain. No multiple-precision arithmetic is
required to obtain a good solution. It is noteworthy that such kind of problems can also successfully be solved.

Section 2 introduces the Cauchy problem. In Section 3, the MFS discretizes the problem. In Section 4, the singular value
decomposition, the Tikhonov regularization and the L-curve are used to obtain a suitable regularized solution. In Section 5,
numerical experiments confirm that the suitable regularization parameter by the L-curve coincides with the optimal one
that minimizes the error between the regularized solution and the exact one. The error and the optimal regularization
parameter against the noise level of the Cauchy data are respectively shown. Then, our interest is how to choose the follow-
ing three parameters used in MFS: the numbers of collocation points, the number of source points, and the radius of a circle
where source points are distributed. A better choice of the parameters is also observed. A problem with an irregular domain
and a problem whose solution has singular points are successfully solved, respectively. Section 6 concludes the paper.

2. Problem setting

We consider the Laplace equation �Du ¼ 0 in a two-dimensional bounded domain X enclosed by the boundary C. We
prescribe Dirichlet and Neumann boundary conditions simultaneously on a part of the boundary C, denoted by C1, as
follows:
u ¼ f ;
@u
@n
¼ g on C1;
where f and g denote given continuous functions defined on C1, and n the unit outward normal to C1. Then, we need to find
the boundary value u on the rest of the boundary C2 :¼ C n C1 or the potential u in the domain X. This problem is called the
Cauchy problem of the Laplace equation, and the boundary data are called the Cauchy data.

Our Cauchy problem is described as follows:

Problem 1. For the given Cauchy data f ; g 2 CðC1Þ, find u 2 CðC2Þ or u 2 C2ðXÞ \ C1ðXÞ such that
� Du ¼ 0 in X; ð1Þ

u ¼ f ;
@u
@n
¼ g on C1: ð2Þ
The Cauchy problem is a well known ill-posed problem. We can show the instability of the solution to the Cauchy problem of
the Laplace equation as follows: for example, in the case where
X ¼ð0;1Þ2 ¼ fðx; yÞ : 0 < x < 1; 0 < y < 1g;
C ¼½0;1� � f0g ¼ fðx;0Þ : 0 6 x 6 1g;

f ðx;0Þ ¼ 1
nk

sinðnxÞ; gðx;0Þ ¼ 0 ðk > 0Þ;
the solution is given by
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uðx; yÞ ¼ 1
nk

sinðnxÞ coshðnyÞ:
Here we can see that
sup
x2C
jf ðxÞj ! 0; sup

x2X
juðxÞj ! 1;
from which we know that the solution u of the Cauchy problem does not depend continuously on the Cauchy data f and g.

3. Discretization by the method of fundamental solutions

The fundamental solution of the Laplace equation in two dimensions is defined as
u�ðrÞ :¼ � 1
2p

ln r
for r ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, which is a solution to
�Du� ¼ dðxÞ:
We distribute the collocation points fxigM
i¼1 � C1 on the boundary where the Cauchy data are prescribed, and the source

points fnjg
N
j¼1 � Xc along a circle outside the domain (Fig. 1). We approximate u by uN:
uðxÞ � uNðxÞ :¼
XN

j¼1

wjujðxÞ; ð3Þ
where the basis function is defined as
ujðxÞ :¼ u�ðjx� njjÞ ð4Þ
and fwjgN
j¼1 are expansion coefficients to be determined below. Since the basis functions (4) have no singular points in X, the

approximate function uN satisfies the Laplace equation (1). Substituting (3) into (2) and assuming that (2) is satisfied at the
collocation points, we have
PN
j¼1

wjujðxiÞ ¼ f ðxiÞ;

PN
j¼1

wj
@uj
@n ðxiÞ ¼ gðxiÞ;

8>>>><
>>>>:

i ¼ 1;2; . . . ;M
Fig. 1. Problem setting and distributions of collocation and source points.
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or in the matrix form:
Aw ¼ b; ð5Þ
where the matrix A ¼ ðaijÞ 2 R2M�N and the vectors w ¼ ðwjÞ 2 RN;b ¼ ðbiÞ 2 R2M are defined by
aij :¼
ujðxiÞ; i ¼ 1;2; . . . ;M

@uj

@n
ðxi�MÞ; i ¼ M þ 1;M þ 2; . . . ;2M

8<
: ; j ¼ 1;2; . . . ;N;

bi :¼
f ðxiÞ; i ¼ 1;2; . . . ;M

gðxi�MÞ; i ¼ M þ 1;M þ 2; . . . ;2M

�
:

4. Regularized solution

4.1. Singular value decomposition

We write the linear system (5) again:
Aw ¼ b; ð6Þ
where A 2 Rm�n;w 2 Rn, and b 2 Rm with m ¼ 2M and n ¼ Nðm P nÞ. In general, (6) has the case where the exact solution w
does not exist in the conventional sense.

For the matrix A 2 Rm�n, the singular value decomposition (SVD) can be written as follows:
A ¼ URVT ¼
Xp

i¼1

riuivT
i ;
where
U ¼ ðu1u2 � � �umÞ 2 Rm�m; V ¼ ðv1v2 � � �vnÞ 2 Rn�n;

R ¼ ðsijÞ 2 Rm�n; sij ¼
ri ði ¼ jÞ
0 ði – jÞ

�
;

UUT ¼ Im 2 Rm�m; VVT ¼ In 2 Rn�n;

m P n; r1 P � � �P rp > 0; rpþ1 ¼ � � � ¼ rn ¼ 0
with the identity matrices Im and In. The non-negative values frign
i¼1 are called the singular values of the matrix A. Using the

SVD, we define the Moore–Penrose pseudo-inverse by
Ay ¼
Xp

i¼1

1
ri

v iuT
i ;
which coincides with the conventional inverse matrix A�1 if the matrix A is square ðm ¼ nÞ and is not singular ðp ¼ nÞ. Let
w0 ¼ Ayb be the Moore–Penrose solution to (6):
w0 ¼ Ayb ¼
Xp

i¼1

ðui;bÞ
ri

v i: ð7Þ
In a real problem, the Cauchy data f and g contain some noises due to observation errors. We consider the following equation
instead of (6):
Aw ¼ bd
; bd ¼ bþ Db ð8Þ
with the noise vector Db 2 Rm. Then, the Moore–Penrose solution
wd
0 ¼ Aybd ¼

Xp

i¼1

ðui; b
dÞ

ri
v i ð9Þ
is completely different from the solution w0 since the solution is discontinuous for the Cauchy data. We need to find a good
approximation to w0.

4.2. Tikhonov regularization

In order to obtain a good approximate solution to (7) by solving (8), we consider minimizing the following functional with
a regularization parameter a > 0 according to the Tikhonov regularization:
JdaðwÞ :¼ kAw� bdk2 þ a2kwk2
: ð10Þ



T. Shigeta, D.L. Young / Journal of Computational Physics 228 (2009) 1903–1915 1907
It is easy to see that the functional Jda is strictly convex for any a > 0. Hence, Jda has a unique minimum point wd
a called the

regularized solution:
Jdaðwd
aÞ ¼min

w2Rn
JdaðwÞ:
We know that wd
a is the solution to
ðAT Aþ a2InÞwd
a ¼ AT bd

: ð11Þ
Eq. (11) is uniquely solvable since the matrix ðAT Aþ a2InÞ is symmetric positive definite. The regularized solution wd
a can be

expressed in the form:
wd
a ¼

Xp

i¼1

ci
ðui;b

dÞ
ri

v i
with the filter factor ci :¼ r2
i =ðr2

i þ a2Þ. Then, substituting wd
a into (3), we find the approximate potential uN in X [ C2.

The error between the regularized solution for the noisy data and the Moore–Penrose solution is decomposed into
wd
a �w0 ¼ ðwd

a �w0
aÞ þ ðw0

a �w0Þ ¼
Xp

i¼1

ci
ðui;DbÞ

ri
v i þ

Xp

i¼1

ðci � 1Þ ðui;bÞ
ri

v i: ð12Þ
The first term is the perturbation error due to the noise Db and the second term is the regularization error caused by reg-
ularization of the exact b. When 0 < a	 1, we see that ci � 1 for most of i, and the error wd

a �w0 is dominated by the per-
turbation error. On the other hand, when a
 1, we see that ci 	 1 and the error wd

a �w0 is dominated by the regularization
error. In the next subsection, we will consider a useful method for finding a suitable regularization parameter to minimize
both of the perturbation and the regularization errors.

4.3. L-curve

To find a suitable regularization parameter, Hansen [3] suggested the L-curve, which is defined as the continuous curve
consisting of all the point ðkAwd

a � bdk; kwd
akÞ for a > 0:
L :¼ fðkAwd
a � bdk; kwd

akÞ : a > 0g:
For fixed a > 0, we get wd
a and then can calculate the residual norm kAwd

a � bdk and the solution norm kwd
ak. Thus, the L-

curve can be plotted as a set of all the points of the residual norms as abscissa and the solution norms as ordinate for all
a > 0.

The L-curve is plotted in double logarithm, and displays the compromise between minimization of the perturbation error
and the regularization error in (12). A suitable regularization parameter is given by the one corresponding to a regularized
solution near the ‘‘corner” of the L-curve. The ‘‘corner” can be regarded as the point where the curvature of the L-curve be-
comes maximum [4,6].

In the case when m ¼ n and the exact b is given, that is, the Cauchy data f ; g have no noises, if A is non-singular, we can
directly solve (5) to obtain a solution with high accuracy. However, we cannot guarantee that (5) is always solvable. Even if
there exists the inverse matrix, the solution to (5) for the noisy Cauchy data differs from the exact solution. On the other
hand, the regularized solution by the Tikhonov regularization is always uniquely determined for a > 0. In the next section,
our numerical experiments will show that the suitable regularization parameter given by the L-curve coincides with the
optimal one aopt defined by
kw0 �wd
aopt
k ¼ min

a>0
kw0 �wd

ak:
5. Numerical experiments

5.1. Circular domain

We first consider a harmonic function uðx; yÞ ¼ ex cos y� ey sin x in a unit disk X :¼ fðx; yÞ : x2 þ y2 < 1g. According to the
exact potential u, the exact Cauchy data are given by f ¼ u and g ¼ @u=@n on the fourth part of the whole boundary C, which
is defined by
C1 :¼ fðx; yÞ : x2 þ y2 ¼ 1; x > 0; y > 0g:
We now assume that the exact potential u is unknown, and identify a boundary value on the rest of the boundary
C2 :¼ @X n C1 from the noisy Cauchy data f d ¼ ð1þ �Þf and gd ¼ ð1þ �Þg, where � ¼ �ðx; yÞ is a uniform random number such
that �d 6 �ðx; yÞ 6 d with the relative noise level of 100d%.
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We distribute uniformly the collocation points fxigM
i¼1 � C1 and the source points fnjg

N
j¼1 � Xc as follows:
xi ¼ ðcos hi; sin hiÞ; hi ¼
2pði� 1Þ

4M
þ p

4M
; i ¼ 1;2; . . . ;M;

nj ¼ ðR cos ĥj;R sin ĥjÞ; ĥj ¼
2pðj� 1Þ

N
þ p

N
; j ¼ 1;2; . . . ;N;

8>><
>>:

ð13Þ
where R > 1 is the radius of the circle where the source points are distributed. We adopt the MATLAB code for solving dis-
crete ill-posed problems based on the SVD, made by Hansen [4,5], to our numerical computations. Due to the maximum
principle, it is sufficient to confirm the boundary error between the identified potential uN and the exact one u rather than
the domain error in our numerical experiments. We define the maximum relative error on the boundary by
e :¼ kuN � uk1
kuk1

;

where the maximum norm on the boundary denotes
kuk1 ¼ sup
x2C
juðxÞj; 8u 2 CðCÞ:
In the first experiment, the relative noise level of the Cauchy data is assumed to be 5% ðd ¼ 0:05Þ. We set the parameters
ðR;M;NÞ ¼ ð3:2;600;28Þ. Fig. 2 shows the distributions of the collocation and the source points. As we can see in Fig. 3,
the corner of the L-curve is located at the point ðkAwd

a � bdk; kwd
akÞ with the regularization parameter a ¼ 2:1195� 10�3.

Fig. 4 shows the regularized solutions on the boundary for a ¼ 2:1195� 10�4;2:1195� 10�3;2:1195� 10�2;0. We can see
-4 -2 0 2 4
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Fig. 2. Distributions of collocation and source points ððR;M;NÞ ¼ ð3:2;600;28ÞÞ.

Fig. 3. L-curve (The corner is located at the point for a ¼ 2:1195� 10�3).



Fig. 4. The regularized solutions versus the exact solution (5% noise level).

Table 1
The maximum relative errors for each a.

a 2:12� 10�4 2:12� 10�3 2:12� 10�2

Error 0.2743 0.0305 0.3382
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that the solution is quite unstable if a ¼ 0, that is, if the regularization is not applied. Comparing the other solutions for
a ¼ 2:1195� 10�4;2:1195� 10�3;2:1195� 10�2, we can confirm that a ¼ 2:1195� 10�3 is a suitable regularization param-
eter to obtain a better approximate solution (Table 1).

From Fig. 5, we can see that the maximum relative error reaches a minimum at a ¼ 10�2:673 � 2:12� 10�3, which coin-
cides with the suitable regularization parameter obtained by the L-curve. Hence, we know that the optimal regularization
parameter can be given as the one corresponding to a regularized solution at the corner of the L-curve.

Fig. 6(a) shows the maximum relative error e for the optimal regularized potential against the relative noise level d. The
regression line in the interval [�9,0] is expressed by log10e ¼ 0:37951log10d� 0:22672. For the optimal regularized potential
uN , we have e ¼ Oðd0:38Þ for d P 10�9. Fig. 6(b) indicates the optimal regularization parameter aopt against the relative noise
level d and the regression line in the interval [�9,0] given by log10aopt ¼ 1:0186log10d� 1:2434. From this numerical result,
we can obtain the relation aopt ¼ OðdÞ for 10�9

6 d 6 1.
After setting the parameters ðR;M;NÞ, we can obtain a suitable regularized solution based on the Tikhonov regularization

and the L-curve. Now, our problem is how to choose suitable parameters ðR;M;NÞ.
Fig. 7 shows the maximum relative error against the number of collocation points. We know from this result that we need

to take sufficiently many collocation points to obtain accurate solutions.
Fig. 8 shows the contour line of the maximum relative error e against ðN;RÞ for the fixed number of collocation points

M ¼ 600. Through this result, we know that the maximum relative error is roughly independent of the number of source
Fig. 5. Maximum relative error against regularization parameter.
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Fig. 6. (a) Maximum relative error and (b) the optimal regularization parameter against relative noise level.
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points N for the fixed radius R of the circle where source points are distributed, and becomes large for large R. As a result, we
know that the parameters R � 3:2 and N P 25 will yield a better regularized solution.

Fig. 9 shows the contour lines of the maximum relative error e against ðN;RÞ for the numbers of collocation
points M ¼ 2000;3000;4000. We can see from the result that for M ¼ 2000;3000;4000 we set R � 3 to obtain
approximately 3% error. As was expected, N is not so important for accuracy. Table 2 shows the optimal choice
of ðN;RÞ for each M.

A better R and the related error seem to be smaller as M increases. Hence, we should take sufficiently large M P 1000 as
much as possible to obtain a high accurate solution. This fact coincides with our common sense that a solution becomes
more accurate by taking many observation data. At least from this numerical result, we propose setting R � 3,
25 6 N 6 30 and sufficiently large M P 1000 to obtain a better regularized solution whose error is approximately 3%.
Table 2
The optimal parameters.

M N R Error (%)

(a) 2000 26 3.3 2.42
(b) 3000 36 2.8 2.32
(c) 4000 29 2.6 1.95
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5.2. Irregular domain

As the next example, we assume the exact solution as same as the one in the previous example in an irregular domain
enclosed by the boundary
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xðhÞ ¼ rðhÞ cos h; yðhÞ ¼ rðhÞ sin h; 0 6 h < 2p
with the Cassini oval
rðhÞ ¼ rðh; a; bÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb=aÞ4 � sin2 2h

qr
; 0 6 h < 2p ð14Þ
in the polar coordinates with a ¼ 1; b ¼ 1:01. It is easy to show that the unit outward normal to the boundary is expressed as
nðhÞ ¼ r0ðhÞ sin hþ rðhÞ cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0ðhÞÞ2 þ rðhÞ2

q ;
�r0ðhÞ cos hþ rðhÞ sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr0ðhÞÞ2 þ rðhÞ2
q

0
B@

1
CA:
We distribute collocation and source points along the boundary and the circle ðR cos h;R sin hÞ uniformly as similar as (13).
Fig. 10 shows the domain, the unit outward normal, the collocation and the source points for example.

The relative noise level of the Cauchy data is assumed to be 10% ðd ¼ 0:1Þ. Let ðR;M;NÞ ¼ ð2;5200;30Þ. The optimal reg-
ularization parameter can be found as a ¼ 2:3493� 10�2 by using the L-curve. Fig. 11 shows the regularized solution on the
boundary with respect to the optimal regularization parameter. From the result, it is concluded that even if the boundary of
the domain is complicated and the noise level of the Cauchy data is higher, the regularized solution is in very good agree-
ment with the exact one.

5.3. Problems with singular points outside a domain

We consider two problems whose solutions have singular points.
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Fig. 14. Domain and distribution of points ððRout;Rin;M;NÞ ¼ ð3:2;0:2;5200;30ÞÞ.
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Fig. 13. The identified solution uN versus the exact solution u (no noise).
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We first assume the exact solution
uðx; yÞ ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:2Þ2 þ y2

q
� log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:2Þ2 þ y2

q

in the annulus domain
X ¼ fðx; yÞ : 0:52 < x2 þ y2 < 1g
with the outer and the inner boundaries
Cout ¼ fðx; yÞ : x2 þ y2 ¼ 1g; Cin ¼ fðx; yÞ : x2 þ y2 ¼ 0:52g:
The exact solution u has two singular points at ðx; yÞ ¼ ð�0:2;0Þ; ð0:2;0Þ.
We now assume that the exact potential u is unknown. From the Cauchy data given on the fourth part of the outer bound-

ary Cout, defined by
C1 :¼ fðx; yÞ : x2 þ y2 ¼ 1; x > 0; y > 0g;
we identify a boundary value on the rest of the boundary ðCout n C1Þ [ Cin.
We distribute uniformly the collocation points fxigM

i¼1 � C1. The source points fnjg
N
j¼1 � Xc are uniformly distributed along

two circles whose centers are the origin and radii are Rout and Rin, respectively.
In the first case, the exact Cauchy data is assumed to be given. Let ðRout;Rin;M;NÞ ¼ ð3:2;0:4;600;60Þ (Fig. 12). Fig. 13

shows the identified solution on the outer and the inner boundaries. We can see that the identified solution is in very good
agreement with the exact one in spite of the solution with singular points.

In the second case, the relative noise level of the Cauchy data is assumed to be 5% ðd ¼ 0:05Þ. Let
ðRout;Rin;M;NÞ ¼ ð3:2;0:2;5200;30Þ (Fig. 14). The optimal regularization parameter can be found as a ¼ 6:3932� 10�3 by
using the L-curve. Fig. 15 shows the regularized solution on the outer and the inner boundaries with respect to the optimal
regularization parameter. From this result, we know that the regularized solution is acceptable.
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Fig. 15. The regularized solution uN versus the exact solution u (5% noise level).
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Fig. 16. The regularized solution uN versus the exact solution u (5% noise level).
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As another example, we assume that the exact solution is given by
uðx; yÞ ¼ x
x2 þ y2
in the same domain as above. The Cauchy data with 5% noise level are prescribed on the same part of the boundary as above.
Let ðRout;Rin;M;NÞ ¼ ð3:2;0:05;5200;30Þ. Fig. 16 shows the regularized solution on the outer and the inner boundaries with
respect to the optimal regularization parameter a ¼ 1:5088� 10�3. The accuracy of the regularized solution is quite good.

Thus, we can obtain a high accurate solution for a problem such that the exact solution is unbounded outside the com-
putational domain.

6. Conclusions

We consider using the MFS as the numerical method for the Cauchy problem of the Laplace equation. Since the MFS is a
meshless method, we can easily treat a complicated boundary. This paper proposes a direct method instead of an iterative
one. The Tikhonov regularization can find a stable solution. The L-curve automatically gives a suitable regularization param-
eter, which coincides with the optimal one as shown in the numerical experiments. Hence, after setting the parameters
ðR;M;NÞ the optimal regularized solution can be obtained quickly and automatically. Moreover, it is a significant point to
be emphasized that our numerical method can successfully solve even a problem whose solution has singular points outside
the computational domain. This is a problem the conventional numerical methods like the FDM and the spectral collocation
method cannot solve. We conjecture that the reason why the MFS can solve this type of problems is that the basis functions
of the MFS have singular points. Hence, it may be possible to solve such a problem by using other numerical methods if we
can choose basis functions with singular points.

The following is the guideline for choosing better parameters ðR;M;NÞ: The collocation points should be distributed as
many as possible compared with the source points. There is no value increasing the number of source points N. It is enough
for N � 30 to obtain a better solution. The radius of the circle where source points are distributed should be small like R � 3,
since the stability is more important than the accuracy in this inverse problem.

In conclusion, the numerical method proposed in this paper is applicable for solving a problem in a complicated domain
with the Cauchy data that contains large noises even with a noise level of 10%. This method is also effective for solving even a
problem with singular points.
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